Visualization of ground target designation from an unmanned aerial vehicle
نویسندگان
چکیده
The Common Ground Station (CGS) receives data from the Joint Surveillance and Target Attack Radar System (Joint STARS) aircraft and from other airborne platforms. High-resolution imagery such as that provided by an unmanned airborne vehicle (UAV) carrying an infrared (IR) and/or synthetic aperture radar (SAR) sensor will be incorporated into an Advanced Imagery CGS (AI CGS) operation. While this level of integration provides a wealth of valuable information, it also increases the complexity of planning, assessment and exploitation which in turn dictates flexible simulation tools for mission rehearsal and operator training. MITRE has developed a ModSAF-driven model for a UAV equipped with a moving target indicator (MTI) radar for wide-area surveillance, and a Battlefield Combat Identification System (BCIS) for positive identification of friendly forces. The imaging functions are performed by integrating the UAV model with visualization software in order to render the sensor’s view in real-time. This model forms the basis for a multisensor CGS simulation (MSCGS) which consists of the multisensor UAV combined with a UAV Control Station (UAV CS). The UAV CS controls imaging task assignments which take place when an MTI track is selected for imaging by means of a mouse click entry on an active MTI display. At that time, the UAV is commanded to fly an automatically determined trajectory in order to align itself for the imaging task. A beam footprint whose position, size and shape is determined by the sensor position, attitude, and field-of-view appears on the display as an indication of the relationship of the image display to the terrain in the operational scenario. A three-dimensional visualization of the designated target area then takes place on a separate display.
منابع مشابه
Quadrotor UAV Guidence For Ground Moving Target Tracking
The studies in aerial vehicles modeling and control have been increased rapidly recently. In this paper , a coordination of two types of heterogeneous robots , namely unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV) is considered. In this paper the UAV plays the role of a virtual leader for the UGVs. The system consists of a vision- based target detection algorithm that uses the ...
متن کاملA Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images
Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...
متن کاملUnmanned Aerial and Ground Vehicle Teams: Recent Work and Open Problems
Unmanned aerial and ground vehicle teams present a majoropportunity for expanded operation over individual autonomous vehicles alone. The different perspectives available for sensors, the different operating ranges and payload capabilities, and the ability to observe a target environment from all angles at once all add up to significant improvements in ability to search for and track targets, t...
متن کاملVirtual UAV Ground Control Station
A new design for an immersive ground control station is presented that allows operators to monitor and control one or more semi-autonomous unmanned remote vehicles. This new ground station utilizes a virtual reality based visualization of the operational space and the graphical representation of multiple information streams to create a comprehensive immersive environment designed to significant...
متن کاملMoving Target Indication from a moving camera in the presence of strong parallax
We describe an algorithm for independent motion detection from video sequences recorded from a camera moving in a 3D rich environment. Such sequences are typical in the case of Unmanned Aerial Vehicles flying at low altitude over varied terrain and also for ground vehicles. We present detection results for both scenarios.
متن کامل